Answer the following questions in your own words. This assignment covers Chapter 1, and Appendices A, B and C.

1. Consider the following sequence of instructions (the first register is the destination, except in the sw instruction, where the first register is the source):

S1: lw R6, 0(R2)

S2: lw R7, 0(R1)

S3: add R4, R6, R7

S4: mul R6, R7, 2

S5: sw R4, 0(R3)

Identify the dependencies in this set of instructions. Specify the instructions involved and the register.

2. Write the DLX code that performs the following arithmetic:

B * C + C / D + A

3. Suppose that a pipeline processor has 8 stages. The stage latencies (completion times) are: 30,40, 50, 10, 10, 30, 20, 50. These times are nanoseconds. The interstage register overhead is5ns.

i. What should the pipeline cycle time be, included the overhead?

ii. Suppose a non-pipelined processor used the stage logic to execute instructions serially (one at a time, with no register overhead). How long would it take the non-pipeline processor to complete 1000 instructions?

iii. How long would it take the pipelined processor to complete 1000 instructions?

iv. What is the speedup of the pipelined processor over the non-pipelined processor?

4. Suppose that a system executes 1,000,000 instructions. The program has the following distribution: 30% load/store instructions, 50% ALU (integer) instructions, 15% branch instructions, and 5% floating point instructions. The CPI for each category of instruction is: load/store-3, ALU-1, branch-4, floating point-8.

i. What is the execution time of the program?

ii. Suppose that the CPI of the floating point program is reduced by half. What is the speed up on the new system over the old?

5. Suppose that a program spends 80% of its time doing I/O through the system hard drive and 20% executing instructions. Using Amdahl's Law, calculate the speedup if you replaced the current hard drive with one that is 1.25 times faster. Calculate the speedup if you replaced the CPU (which executes the instructions) with one twice as fast. Which gives you that better speedup?

6. Write three short assembly language programs in the DLX code. These assembly language programs will do the following:

• compute the average of 10 numbers in memory and store the result to memory

• compute the greatest common divisor of two numbers in memory and store the result to memory

• compute the inner product of two five element vectors

1. Consider the following sequence of instructions (the first register is the destination, except in the sw instruction, where the first register is the source):

S1: lw R6, 0(R2)

S2: lw R7, 0(R1)

S3: add R4, R6, R7

S4: mul R6, R7, 2

S5: sw R4, 0(R3)

Identify the dependencies in this set of instructions. Specify the instructions involved and the register.

2. Write the DLX code that performs the following arithmetic:

B * C + C / D + A

3. Suppose that a pipeline processor has 8 stages. The stage latencies (completion times) are: 30,40, 50, 10, 10, 30, 20, 50. These times are nanoseconds. The interstage register overhead is5ns.

i. What should the pipeline cycle time be, included the overhead?

ii. Suppose a non-pipelined processor used the stage logic to execute instructions serially (one at a time, with no register overhead). How long would it take the non-pipeline processor to complete 1000 instructions?

iii. How long would it take the pipelined processor to complete 1000 instructions?

iv. What is the speedup of the pipelined processor over the non-pipelined processor?

4. Suppose that a system executes 1,000,000 instructions. The program has the following distribution: 30% load/store instructions, 50% ALU (integer) instructions, 15% branch instructions, and 5% floating point instructions. The CPI for each category of instruction is: load/store-3, ALU-1, branch-4, floating point-8.

i. What is the execution time of the program?

ii. Suppose that the CPI of the floating point program is reduced by half. What is the speed up on the new system over the old?

5. Suppose that a program spends 80% of its time doing I/O through the system hard drive and 20% executing instructions. Using Amdahl's Law, calculate the speedup if you replaced the current hard drive with one that is 1.25 times faster. Calculate the speedup if you replaced the CPU (which executes the instructions) with one twice as fast. Which gives you that better speedup?

6. Write three short assembly language programs in the DLX code. These assembly language programs will do the following:

• compute the average of 10 numbers in memory and store the result to memory

• compute the greatest common divisor of two numbers in memory and store the result to memory

• compute the inner product of two five element vectors

Mr. Mohammad Kahn is a prominent local CPA. His mother was from India, his father from Iran. He practices Islam and wears a traditional head cover. He graduated from NIACC, Central College and the Wharton...You have been hired as a consultant by a local government to landfill in the council area Consultation is to take place during information is available to the decision-maker.Your task is to prepare a consultation...in either an Australian Mate or country of your choke.assessment system in either an Australian slate or country ofEither project level or SEA or both may be used. You may justify choke. Essay must describe...CASP Checklist: 12 questions to help you make sense of a Cohort StudyHow to use this appraisal tool: Three broad issues need to be considered when appraising a cohort study: Are the results of the study...Hi there,It’s a nursing power point assignment on pressure injury risks management in hospital setting. But firstly wandering about the price?ThanksEconomicsFurther to the email I just sent you re Assessment 2, below are the Asia-Pacific country and industry pair allocations for each one of you individually.As you know, the COVID-19 pandemic is adversely...topic is `Major Actors and Their Role in The Process of Educational Evaluation`**Show All Questions**